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89. On Bimolecular Reactions in Solution. 
By C .  N. HINSHELWOOD and C. A. WINKLER. 

To a high degree of approximation, the rate of chemical reactions is represented by the 
Arrhenius equation, which, for our present purpose, is best written in the form : number of 
molecules reacting = PZe-E’RT,  2 being the collision number, and P a factor independent 
of temperature. The interpretation of P has been the subject of much experiment and 
theory. The study of gas reactions revealed the existence of a considerable number of 
cases where P approaches unity, thus providing a form of behaviour where activation is 
not only necessary but also sufficient for reaction. The mechanism of the first-order decpm- 
position of complex organic molecules is, however, much less simple, and factors other than 
the communication of activation energy play an important part. The same is true of 
some bimolecular association reactions in gases, and, especially, of many bimolecular reac- 
tions in solution, which tend, on the whole, to involve considerably more complex structures 
than most of those concerned in second-order reactions accessible to measurement in the 
gaseous state. 

Attention was first directed by Christiansen (2. PhysikaZ. Chem., 1924, 113, 35) to the 
fact that for these solution reactions P may be much smaller than unity. In other cases it 
may approach unity (Moelwyn-Hughes, “ Kinetics of Reactions in Solution,” Oxford, 1933, 
Chap. IV), though usually only for reactions involving an ion (Grant and Hinshelwood, 
J., 1935, 258). It seemed possible that chemical changes might fall into two well-defined 
classes of slow and fast, determined by the presence or absence of some special factor, such as 
a quantum-mechanically forbiddenelectronic transition ; but experiments have not supported 
this idea (Hinshelwood and Legard, J., 1935, 587; Hinshelwood, J., 1935, 1111; BUZZ. 
Soc. chim., 1935,2,1786). We are inclined now to the opinion that there is no sharp division 
between the two classes, an& moreover, that the whole of the continuous range of behaviour 
ean, if necessary, be interpreted along more or less classical lines. This conclusion is based 
upon the statistical survey given in a later section (p. 375). Before discussing these statis- 
tics, it is desirable to examine the appropriateness of the representation of reaction velocity 
in the form PZe-E’RT. Other methods of treatment are used, and, in particular, the analysis 
of the temperature-independent factor of the Arrhenius equation into a collision factor and a 
steric factor has been criticised. Alternative methods of treatment are therefore first 
considered, the relation of these to the collision method being in any case a matter of some 
interest. We shall reach the conclusion that the discussion of the problem in terms of the 
factor P has an interest of its own, and that we are justified in basing our survey upon it. 

The Transition-state Method.-In this method (Eyring, J .  Chem. Physics, 1935, 3, 107 ; 
Evans and Polanyi, Trans. Faraday SOC., 1935,31, 875) the activated molecules are treated 
as an independent species in equilibrium with the reactants. Statistical mechanics already 
provides an expression for the absolute value of such an equilibrium constant. The 
calculation (Fowler, “ Statistical Mechanics,” Cambridge, 1929, Chap. 5) is an elaboration 
of that by which the Maxwell-Boltzmann law is derived. One works out the total 
number of complexions of the system, taking into account, not only all the ways 
in which all the atoms and molecules present can be assigned to the different energy 
levels, but also the number of ways in which the various atoms can be free or distri- 
buted among the various molecules present. In doing this, a special hypothesis must be 
made. The number of molecules in a given quantum state is a perfectly definite number : 
the number in a given non-quantised translational state is an indefinite number, depending 
upon what limits are allowed in defining the state. To introduce a definite correspondence, 
a range of space and velocity co-ordinates such that m.du.dx = k is taken as the equivalent 
of a single quantum state. The condition that the number of complexions shall be a 
maximum gives the equilibrium constant. The expression is of simple form, each concen- 
tration term in the chemical equilibrium constant is replaced by the energy-partition func- 
tion of the corresponding molecular species, and the product is multiplied by c E I R T  where 
E is the energy absorbed in the reaction. Each partition function is itself a product of 
separate partition functions for translational, vibrational, and rotational energy. For 
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a translational degree of freedom, the partition function assumes the form l / 2 m k T / h ,  
for a vibrational degree 1/(1 - , P l k T ) ,  for a two-dimensional rotational motion 8x21kT/h2, 
and for a three-dimensional rotation 8 x 2 ( 8 x s r , I ~ 3 ) r ( k T ) t / ~ 3 ,  where I is a moment of inertia, 
m a mass, and v a vibration frequency. 

If we write the equilibrium constant expressing the concentration of activated mole 
cules in terms of that of the reactants in the form 

(Statistical weights are omitted.) 

Product of partition functions for active complex K = (  
Product of partition functions for reactants 

where E is the activation energy, then the rate of reaction may be set proportional to this 
expression, which is called the probability of the activated state. Without going into the 
question of the validity of the interesting method by which Eyring seeks to obtain the 
absolute reaction rate by multiplying such an expression by a thermal translational velocity, 
it may be said that valuable information can be obtained by considering the relative values 
of K for different types of case. For example, one may compare K for a reaction involving 
the union of two complex molecules, with the value K ,  for the union of two atoms to form a 
diatomic molecule (Evans and Polanyi, Zoc. cit.; Bawn, Trans. Faraday SOC., 1935, 31, 
1536). K will contain three translational partition functions, a three-dimensional rota- 
tional, and n vibrational partition functions for the active transition complex of the two 
reactants, divided by six translational, two three-dimensional rotational, and I vibrational 
partition functions for the two separate reactants. We may represent this symbolically by 
T3R3Vn/T6R6V2. Since the total number of degrees of freedom before and after union of 
the reactant molecules to the complex must be the same, I = n - 6. K,, on the other 
hand, will contain T3 and R2 and V for the diatomic molecule, divided merely by T6 for 
the two atoms, giving T3R2VIT6. (We are not formulating one of the vibrations here as a 
translation along a co-ordinate in which decomposition occurs : this is unnecessary, since 
the corresponding terms will cancel & the ratio K/K,.) If the energies of activation are 
equal for the two kinds of reaction under consideration, KIK, becomes of the form V5/R5, 
i.e., a product of five one-dimensional vibration functions divided by a three-dimensional 
and a two-dimensional rotation function. The vibrational functions are those of the new 
vibrational degrees of freedom which come into being when half the translations and rota- 
tions of the reacting molecules lose their individuality in the complex. If hv is fairly 
small, V reduces to the form kT/hv;  R,  apart from a small numerical factor, is l / 2xIkT/h  
(the exact product R3R2 is easily worked out). Bawn (Zoc. cit.), taking kT/hv as equal to 
unity for each of the V terms, and all the moments of inertia to be 10-39, shows that V5/R5 
may be very small. Thus if P were unity for the atomic reaction, it would be very small 
for the reaction of the complex molecules. 

Comparison of the Transition-state Method and the Collision Method.-The question 
is whether the transition-state method can be regarded as superseding the collision method. 
It is objected that the collision diameter used in calculating 2 is an unsuitable quantity to 
deal with, because it is the distance at which transfer of momentum occurs, and, although 
significant in the discussion of transport phenomena, is only arbitrarily related to chemical 
interaction. In the collision method we consider the 
two molecules at the distance for momentum transfer (which, incidentally, is fairly well 
related to crystallographically-determined distances), and inquire what further conditions 
of orientation and internal state, relative velocities of pairs of atoms, and so on, must be 
fulfilled. In applying the transition- 
state method, however, the difficulties are really as great, and the arbitrariness of the 
assumptions which must be made to obtain a numerical answer is only less apparent. In 
the problem discussed in the last section, kT/hv was taken as unity, while the moment of 
inertia was so chosen that R was a quantity of the order 10. With these values a very small 
P followed naturally. But the vibrations concerned are those of newly-formed degrees of 
freedom in an active molecule where the binding may be very loose : thus kT/hv might in 
fact be much greater than unity, and when five such terms are multiplied together a whole 
range of different results can be obtained. Again, three of the R terms refer to the active 

This, however, is a matter of taste. 

These conditions are evidently diacult to specify. 
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complex, and the assumption that this has a normal moment of inertia is equivalent to 
specifying fairly exactly the distance of the molecules at the instant of chemical trans- 
formation. To obtain a small value of P we also had to assume that hv/kT was not very 
small compared with unity, the new vibrations in the critical complex being those of not too 
loosely bound atoms. In other words, each pair of atoms which form a new link must be 
not too far from their stable positions-not stretched apart, for example, so that the 
vibrations are near a convergence limit. This, therefore, seems to be equivalent to demand- 
ing a rather exact orientation of the colliding molecules as a whole, and probably also a 
fairly exact definition of the exact phase of their motion which certain atoms are in. To 
specify the five V terms correctly and obtain the exact value of P is in essence as difficult 
as to specify the orientations and phases correctly. 

I t  seems, then, that the collision theory is not really at a fundamental disadvantage, if, 
as a matter of taste, we prefer to approach the problem in that way. The conclusion is 
that we should seek all the help we can obtain by applying both methods. Though the 
transition-state method works in terms of quantities which are themselves of a more 
general significance, assuming that we know them, the specification of the collision con- 
ditions must always retain some independent interest.* 

Consideration of Entrofy Changes.-The entropy change in a chemical reaction is related 
to the equilibrium constant by the well-known thermodynamic equations log K = U/RT + 
SIR (where U is the difference of the activation energies for the two opposing reactions), 
and K = k,/k,. Since log k = A - 
E/RT, it follows that A ,  - A ,  = S. Very interesting relations between S and the separate 
values A ,  and A ,  may be observed (cf. Soper, J., 1935, 1393; Rice and Gershinowitz, 
J .  Chem. Physics, 1934,2,853 ; Rodebush, ibid., 1933,1, MO), but it does not seem possible 
in any generally valid way to derive A ,  and A ,  from S. It may be possible to split S into 
two terms such that S = f(S,) - f(S,), where f(S,) and f(S,) are respectively functions of 
reactants only and products only, but these two quantities will not necessarily equal A ,  
and A , ;  for we might have A ,  = f(S,) + C and A ,  = f ( S J  + C, and C may be as im- 
portant as any of the other terms. Thus we cannot, without special justification, calculate 
P fromf(S). This was clearly stated by van ’t Hoff (“ Lectures,” English transl., p. 214) 
in his discussion of the influence of solvents on reaction velocity. He pointed out that the 
solvent has two effects, one acting on the two opposing reactions to an unequal extent and 
producing the thermodynamically calculable equilibrium shift, and the other operating 
equally, to an unknown extent, on the forward and the reverse reaction. 

That the limitation of the thermodynamic method is real and not merely formal, is 
shown by the fact that P may be a function of the catalyst employed, e,g., in esterification 

* The present method of approach is not inconsistent with the view that the reactive species is 
sometimes a definite complex (see, e.g., Conant and Bartlett, J. Amer. Chem. SOC., 1932, !54, 2881). 
The concentration of such complexes will vary with temperature, and this introduces a difference 
between the observed activation energy, obtained from the Arrhenius equation, and the activation 
energy which the complex itself must possess in order to react. This fact might seem to call for a 
modification of the ordinary collision treatment, but the difference is really only a formal one. If two 
reactants, X and Y, form reversibly a complex XY with evolution of heat Q. then the concentration of 
XY, as long as it is small compared with that of X and Y, is given by van ’t Hoff’s equation, [XYI = 
const. [X][yleQ/ap. If the complex itself requires an activation energy E, for further change, its rate 
of reaction wil l  be proportional to [Xyle--8.@T, and thus the rate expressed in terms of the reactants 
will be const. [X][Yle-(zC-Q)IRT. The Arrhenius activation energy will be E, - Q, i . e . ,  less than E,. 
This, however, does not explain why the reaction proceeds a t  a smaller rate than might have been 
expected from the observed value, Ec - Q. For molecules which bring only E,  - Q can form a complex. 
which, by hypothesis, will now contain E,  - Q + Q, and thus possesses the activation energy necessary 
for further reaction. Why it does not react immediately but persists and is perhaps later resolved into 
its products once more, is the same problem as before. The same argument applies mufatis mufundis 
to the caSe of an endothermically formed complex. We have then the state of affairs that molecules 
which bring the observed activation energy into a collision can give a complex possessing the algebraic 
sum of the observed activation energy and the heat of formation of the complex, i.c., the true activation 
energy of the complex, yet reaction does not occur except in a fraction of the encounters. This fraction, 
as before, is P. 

Hence log k ,  - log k,  = S / R  - E,/RT + E,/RT. 
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reactions (Williamson and Hinshelwood, Trans. Faraday SOC., 1934,30,1145 ; Hinshelwood 
and Legard, J., 1935,587, l588), or in the acetone-iodine reaction (Smith, J., 1934, 1744). 
Since the equilibrium constant cannot be altered by the catalyst, P cannot be calculated 
in these cases from thermodynamic quantities alone. This does not preclude the existence 
of striking correlations between P and the position of equilibrium in certain types of 
reaction (compare Evans and Polanyi, Zoc. cit .) .  

The ex$erimentally observed Values of P for Bimoleczclar Reactions in Solution.-A 
convenient way of representing experimental results is to plot log k against E for series of 
related reactions, examples being chosen in each series to cover as wide a range of velocity 
as possible. In this way it is easy to decide whether relations between k ,  E ,  and P are 

FIG. 1. 

k 

\- 0 

significant and characteristic or merely accidental. 
in this way, and the results are collected together in Fig. 1. 

Several series have now been studied 
The series included are the 

A. Esterification in alcoholic solution, the catalyst being the undissociated acid mole- 
cule (Hinshelwood and Legard , Zocc. cit .)  . 

B. Benzoylation of aniline as modified by nuclear substituents (Williams and Hinshel- 
wood, J., 1934, 1079; Newling, Staveley, and Hinshelwood, Trans. Faraday SOC., 1934, 30, 

C. Quaternary ammonium salt formation in benzene solution (Winkler and Hinshel- 

D. Two examples only : interaction of acetic anhydride and alcohol in two solvents 

following : 

579). 

wood, J., 1935, 1147). 

(Moelwyn-Hughes and Hinshelwood, J. , 1932, 230). 
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E. Esterification with hydrion as catalyst (Hinshelwood and Legard, Zoc. c i t . ) .  
F. Halogenation of phenolic ethers (Bradfield and Jones, J., 1928, 1006, 3073; 1931, 

Here about half the available points, chosen at random, are plotted). 
G. Reaction between trinitroanisole and ring-substituted dimethylanilines (Hertel and 

H. Oxidation of cyclic compounds by potassium permanganate (preceding paper). 
I. Two examples only : additions to dienes (Wassermann, J., 1935,828). 
J. Alkaline hydrolysis of substituted benzoic esters (Ingold and Nathan, this vol., p. 222. 

We are indebted to Prof. Ingold for advance communication of these results). 
K. Interaction of alkyl halides and negative ions. [Three of the points refer to the 

results of Grant and Hinshelwood for the reaction of potassium hydroxide with ethyl 
halides (J., 1933, 258), and the others are the first five values given by Moelwyn-Hughes 
(09. cit., table, p. 79). They could be supplemented by others from this same table, but 
the range of E values would not thereby be extended, nor would the degree of departure of 
the points from a single line be appreciably changed. The values given are justly repre- 
sentative of the whole set.] 

Of these, D and I transgress the principle that a whole series should be available, but 
they are included as examples of interesting types of reaction, meriting further study. 

The values of k are all calculated to 100" and expressed in g.-mol./l./sec. The two 
diagonal lines in Fig. 1 are of the standard slope, 2.303RT, and in positions corresponding 
to P = 1 and P = 1W8 respectively. 

In any given series the tendency of the points to group themselves about a line of the 
standard slope is evident, except that in series A there is an increase in the slope towards 
the higher values of E. Both the position of the mean standard line for any series and the 
deviations of the individual points from it are of interest. The following simple statistical 
analysis was therefore made. By the method of least squares the best line of slope 2-303RT 
was drawn through the points for a given series, only the two points for the highest E values 
in series A being omitted. This line cuts the ordinate corresponding to log k x lo7 = 0 at a 
value b. Since k x lo7 = cPZe-E'RT, where c is a constant for the conversion of units, 
2.303RT. log (K x lo7) = 2-303RT. log (cPZ) - E ,  whence b = 2-303RT. log ( cPZ) .  For 
series K we know that P is almost exactly unity. The variations of 2 from case to case are 
small and are neglected : hence from the value of b for series K we find c, and hence the 
absolute values of P for the other series. 

To convey an idea of the distribution of the individual values in a series about the mean, 
the Gauss curves shown in Fig. 2 have been constructed. Although there are not enough 
examples in any series to establish the exact form of the frequency distribution curve, the 
assumption of the symmetrical form is unobjectionable in representing the range of the 
deviations. The constant a in the equation of the curves y = e+"' is found for each series 
by measuring the range of log P which includes approximately half the points, and then 
using a table of error functions and their integrals. 

Figs. 1 and 2 both show that there is a fairly continuous transition from the fast to the 
slow type of reaction. Fig. 2 shows further that there is considerable variation in the 
degree of conformity to the mean type of behaviour. 

Factors influencing P.-We may now attempt to estimate the range over which P might 
theoretically be expected to vary. For this p u p s e  we tabulate first a series of factors 
which tend to make P small, and assign a rough but, we think, not unreasonable figure for 
the ratio in which perfect efficiency of activating collisions might be reduced by the 
operation of each. 

(1) The reactive groups of the colliding molecules must be presented to one another in 
correct orientation. We might plausibly take 1/10 of each molecular surface as active in an 
unfavourable case. Thus according as two or three molecules are involved (three, for 
example, with acid, catalyst, and alcoholic solvent), the inefficiency factor could be any- 
thing from unity down to 1W2 or 1V. 

(2) New linkings must be formed and existing ones broken. A link is most easily 
broken when the two atoms are at  the extreme of the amplitude of their vibration. Thus, 
even when the link is activated, there may be only a comparatively narrow range of phase in 

2903,2907. 

Dressel, 2. ~hysikal.  C k m . ,  1935, B, 29,178). 

, 
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which actual rupture occurs. This might easily correspond to 1/10 only of the whole period. 
Changes in at least two links are usually involved, so that a factor of would not be 

(3) Groups may be present in the molecules which impede access to the reactive centres. 
Although steric hindrance is overcome mainly by increased activation energy, approach 
to the active centres may still only occur when the hindering groups are in that phase of 
their bending oscillations which opens the widest angle of access. A factor of 10-1 is reason- 
able here. 

(4) In some reactions the solvent must play an intimate part which does not appear in 
the chemical equation. Several attempts have been made to study typical solution reac- 
tions in the gas phase, and the reaction has usually been proved to occur not homogeneously 
but in an adsorbed film (cf. J., 1932, 230; Trans. Faraday SOC., 1935,31, 1739). The con- 
tinuous medium round the reacting molecules is thus in some way highly important. 
Moreover, the value of P vanes over a considerable range from solvent to solvent. Thus 

surprising. 

FIG. 2. 
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the orientation of the solvent molecules round the activated complex can be of great im- 
portance. For example, in a reaction such as quaternary ammonium salt formation the 
solvent dipoles might need to be orientated in such a way as to produce a field capable of 
stabilising the polar form of the transition complex. The probability of the correct orient- 
ation is very difficult to estimate, but as a rough approximation we may take each active 
complex to be surrounded by an octahedral distribution of solvent molecules, each one of 
the six having a " right " and a " wrong " onentation. The chance that all are right is 
1/64, from which we will only conclude that a factor of the order 

If all these adverse factors combine, P will be of the order Their influence, however, 
may be modified by the following : 

(I) Smallness or simplicity of the reacting molecules reduces the effect of all four 
factors. 

(11) Anything which lengthens the duration of collisions will modify (2), (3), and (4). 
As a special case of a lengthened collision time we may have definite complex formation. 

(111) Ionic charges on the reactants may remove the effect of (1) by producing auto- 
matically a favourable orientation. 

(IV) If, as is possible in certain catalytic gas reactions (cf. J., 1935, 1111), specific kinds 

is possible. 

They may also affect (4) and enhance (11). 
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of energy transfer occur in the activating collisions, the molecules may behave as virtually 
simpler structures than they really are, with consequent increase of P. 

In the most favourable case these factors may raise P to unity. The balance between 
them and the adverse factors (1)-(4) may be expected to give any value between unity 
and 1W8. To decide how the balance is made up in a given reaction is a matter of no small 
dficulty, but hardly greater than that of assigning the correct values to all the quantities 
used in the statistical-mechanical treatment. In a general way it may be said that in series 
K ( P  = 1) factors (I) and (111) are apparently of decisive importance, that factor (111) 
accounts for the marked difference between A and E, and that in the reactions where polar 
salts are formedfactor (4) is evidentlyveryimportant. On the whole, it may be said that the 
results are quite understandable even though they would have been hard to predict in 
detail. The range of divergence from the averages can also be understood in a general way. 
When the reactive group is highly localised, or the group modifying the rate is remote from 
the active group, the departures from the mean wil l  be small. The benzoylation reaction is 
a good example of this, as also is series J. In the esterification series, the reacting groups 
are much more closely incorporated in the main structure and the range of variation is 
correspondingly wider. The same applies with greater force to the ring-breaking oxidation 
reactions where the structural factor must be as great as to give rise to what is virtually a 
change in mechanism from case to case. Within the total range of variation of P in a given 
series, various regularities, such as correlations between E and P, and so on, are possible 
(J., 1935, 1111 ; cf. Evans, Morgan, and Watson, ibzd., p. 1167). 

If second-order gas reactions are regarded from this point of view, factor (I) would seem 
to be the governing one, though in some catalytic reactions (IV) may play an important 
part. 

First-order reactions, in gases and in solution, present a rather different picture. When 
only one molecule reacts, the process does not have to be completed in the short time of a 
collision, and the preactivated molecule may draw upon the energy stored in any of its 
parts. If the molecule is complex, this may give rise to a rate of reaction far greater than 
2 T E l R T .  In this sense P becomes much greater than unity. Examples are well known for 
both gases and solutions. The range over which P may vary is from about unity to 105. 
Thus, taking both first- and second-order reactions into account, we have a continuous 
range of P values from 10-* to lo5. In a general way we are now in a position to say where 
approximately, though by no means quantitatively, a reaction of a given type will occur in 
this spectrum of P values. Though the full interpretation may possibly involve factors as 
yet unknown, and quantum-mechanical explanations may be necessary for some of the 
more detailed relations (compare Bell, Proc. Roy. SOC., 1936, in the press), relatively simple 
ideas can give at least a qualitatively satisfactory explanation of the whole range of 
observed behaviour. 

SUMMARY. 

The transition-state method and the collision method of treating bimolecular reactions 
are compared, and it is concluded that the latter method is quite appropriate for a general 
discussion of the problem. A statistical survey of bimolecular reactions in solution is made 
in terms of the collision theory. 

The factors influencing the value of P in the equation, rate = PZe-E'RT, are discussed, 
and the conclusion is reached that the whole range of observed behaviour can, if necessary, 
be understood, qualitatively at least, in terms of relatively simple classical ideas. 
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